Skip to main content

What is a Photoelectric Sensor?

 In this post, we will learn the working principle of a photoelectric sensor, and the types, and features of these sensors.

The photoelectric sensor is a very important technology used in instrumentation. It makes optics and photo electricity into picture for working.


As a transducer, it converts light energy into electrical energy. It is used in many industrial automation applications.

In this post, we will see the concept of a photoelectric sensor.


What is a Photoelectric Sensor?

A photoelectric sensor emits light from the transmitter, which consists of a light-emitting element. A receiver at the other end will detect this light beam.


When this emitted light is cut by any object in between, the light beam intensity received at the receiver changes. The light intensity is continuously processed and converted into an electrical output.

As the intensity changes, the electric output changes. This electrical output is then fed to any circuit and shows whether any object has passed between the light or not. This is the concept of a photoelectric sensor.


Types of Photoelectric Sensors

There are three basic types of photoelectric sensors available. They are mentioned below.


Through-Beam Sensor

In this sensor, the light travels to a receiving element and this element then immediately generates an electrical output. This means the transmitter and receiver will be at different ends.

When there is an object in between, the sensor will give a different output; and when there is no object in between, the sensor will give a different output.


The output can be NO or NC, and PNP or NPN.  


Retro-reflective Sensor

In this sensor, the light travels to a receiving element (which is a retro reflector) and travels back to the transmitter.

This means the transmitter and receiver will be both at the same end. In between, when an object comes, this element then immediately generates an electrical output.


When there is an object in between, the sensor will give a different output; and when there is no object in between, the sensor will give a different output. The output can be NO or NC, and PNP or NPN. 


Diffusive Sensor

In this sensor, the light travels to an object and reflects back to the receiver at the sensor end. This means the transmitter and receiver will be both at the same end.


When there is an object sensed, the sensor will give a different output; and when there is no object sensed, the sensor will give a different output. The output can be NO or NC, and PNP or NPN.


Features of Photoelectric Sensors

The following are the features of photoelectric sensors.


  • Long sensing distance (can go even till 10m.)
  • No sensing object restrictions (can detect any object, including glass, plastic, wood, or liquid).
  • Fast response time.
  • High resolution.
  • Long life of sensors (because there is no contact with the object, which prevents chances of physical damage).
  • Easy adjustment.
  • It is not affected by object color, gloss, or inclination.
  • Simple wiring and optical axis adjustment.

In this way, we understand the concept of a photoelectric sensor.

Comments

Popular posts from this blog

Ferrules and Cross Ferruling

 Ferrules are identification labels provided for every wire terminations in an instrument, equipment, or electrical/instrumentation control panels. These tube-shaped sleeves can be inserted easily on each individual wire in a multi-core cable. In earlier days fixed digits/letters are used as ferrules, but now Instrumentation engineers/technicians prints out desired ferrules by using a ferrule printing machine. Typical Ferrule The numbers/ letters on the ferrules will be given as per the approved electrical hook up or loop diagrams. This helps technicians to easily identify a particular loop/wiring from a series of terminal blocks and to troubleshoot the desired terminal connection. Separate numbers on the ferrules distinguish the positive and negative polarities of wires, thus ensure the polarity protection of the instrument. Cross Ferruling  As a wire is connected on its both ends, it is quite useful to use a cross reference method for wire identification. Unlike normal ferru...

PLC Program for Mixing Tank

 Create a ladder diagram for controlling a batch mixing process. Implement a PLC program for mixing tank or Mixing Process using PLC Ladder Logic. PLC Program for Mixing Tank Fig : Mixing tank A tank is used to mix two liquids. The required control circuit operates as follows: A. When the START button is pressed, solenoids A and B energize. This permits the two liquids to begin filling the tank. B. When the tank is filled, the float switch trips. This de-energizes solenoids A and B and starts the motor used to mix the liquids together. C. The motor is permitted to run for 1 minute. After 1 minute has elapsed, the motor turns off and solenoid C energizes to drain the tank. D. When the tank is empty, the float switch de- energizes solenoid C. E. A STOP button can be used to stop the process at any point. F. If the motor becomes overloaded, the action of the entire circuit will stop. G. Once the circuit has been energized, it will continue to operate until it is manually stopped. Solution...

What is a Torbar? – Averaging Pitot Tubes

 The Torbar is employed for flow measurement of liquids, gases, or steam in circular, square, or rectangular section ducts for large flow rates. The Torbar is an insertion type multi-port self-averaging primary sensor for flow measurement. Torbar TORBAR is a set of Pitot tubes mounted on a bar across the pipeline with no moving parts. An averaging Pitot tube is a technology, while TORBAR is a manufacturing brand name. There are several brands available in the market with VERABAR, ANNUBAR, etc. Averaging Pitot Tube Principle Purpose Averaging Pitot tube can be employed when the average velocity of the flow profile, rather than the velocity in a specific point in the cross-section is desired. Averaging Pitot Tubes Principle It measures the differential pressure between the static pressure tap and the tap of full pressure of a stream. Thus such magnitude of differential pressure is directly proportional to the square of the flow rate. Working The TORBAR is designed in such a way that ...