Skip to main content

What are Impulse Lines? – Impulse Line Problems & Solutions

 Taking a DP, gauge, or absolute pressure reading from a process involves creating process connections so the pressure can reach the sensor.


Impulse Line

Frequently this is done via impulse lines.


The impulse line carries the process pressure from the tapping point to the transmitter.


In some cases, these can be short and very direct, or they may need to be long to allow mounting the transmitter some distance from the process equipment.


The transmitter should be installed below the process tapping points to a wall or other rigid mounting using the optional bracket assembly or similar rigid bracket.


The transmitter should be piped up in compliance with the pressure transmitter installation guidelines with the process tappings taken to the side of the pipe work.


The transmitter should be mounted within two degrees of the horizontal, small variations in mounting attitude will affect the transmitter zero point, however, this may be calibrated out during the initial commissioning procedure detailed later.

When used on steam service the transmitter and impulse lines must be filled with water before system start up to prevent live steam damaging the transmitter.

The transmitter should be installed above the process tapping points to a wall or other rigid mounting using the optional bracket assembly or similar rigid bracket.

The transmitter should be piped up in compliance with the pressure transmitter installation guidelines with the process tappings taken to the top of the pipework.

The transmitter is placed above the process measurement tapping to allow condensed liquid to drain back into the process lines.

The transmitter should be mounted within two degrees of the horizontal, small variations in mounting attitude will affect the transmitter zero point, however, this may be calibrated out during the initial commissioning procedure detailed later.

Problems
Conventional impulse lines can create a variety of problems:
When used on steam service the transmitter and impulse lines must be filled with water before system start up to prevent live steam damaging the transmitter.

The transmitter should be installed above the process tapping points to a wall or other rigid mounting using the optional bracket assembly or similar rigid bracket.

The transmitter should be piped up in compliance with the pressure transmitter installation guidelines with the process tappings taken to the top of the pipework.

The transmitter is placed above the process measurement tapping to allow condensed liquid to drain back into the process lines.

The transmitter should be mounted within two degrees of the horizontal, small variations in mounting attitude will affect the transmitter zero point, however, this may be calibrated out during the initial commissioning procedure detailed later.

Problems
Conventional impulse lines can create a variety of problems:
  • They are part of the process containment
  • If they leak, the product is lost, with potential safety, economic, and environmental implications
  • If process equipment calls for exotic materials, the impulse lines need it too
  • They can fill with gas or liquid which compromise their ability to transmit pressure accurately
  • They can freeze in cold weather
  • Blockage
  • Improper lines may cause damping of pressure signals
Impulse lines are typically custom efforts and often built in the plant’s maintenance shop, reflecting the skill of local contractors or pipe fitters.

Solutions
A better choice is to use a pre-assembled instrument, such as is available with a DP flow meter, a complete unit built in a factory and fully tested.

All fasteners are tightened to the optimum torque level and the finished assembly can be leak tested. These meters are ready to install right out of the box and even include a calibration report.

Whatever the situation, impulse lines must not impede pressure delivery so the transmitter can read the sensor value indicating the actual process condition.

As an extreme example, if there is an isolation valve on the impulse line and the valve is closed, nothing can reach the transmitter, and its reading will not reflect the process conditions.

Such a situation is not always easy to detect because some pressurized fluid may be trapped in the line and reflected by the transmitter.

Similarly, inaccurate readings can result when the line is partially plugged, frozen, or there is some other internal obstruction.

Today’s advanced transmitters are able to perform a plugged impulse line diagnostic and detect such situations because they listen to the process noise through the connection.

If the noise level decreases or changes character and there is no attributable cause, there is likely an obstruction forming in the lines.

Once the change crosses a designated threshold, the transmitter can warn operators and maintenance engineers.

Process intelligence capabilities can also be built into pressure transmitters, allowing them to listen to process noise continuously.

Once a baseline of normal noise is retained in the transmitter’s memory, it can perform statistical analysis on what it hears, listening for patterns deviating from normal.

Reasons for such changes can include:

Pump cavitation
Distillation column flooding
Regulator and valve setting changes
Furnace flame instability
Characterizing and analyzing such noise provides a tool to help operators or engineers identify a likely source.

Operators and maintenance engineers can be informed early so the situation can be corrected immediately if necessary or monitored until a scheduled shutdown.

Process alerts can also indicate upsets and other conditions capable of creating spikes or dips in normal readings.

Such alerts can be logged in individual transmitters and accessed during troubleshooting.


Comments

Popular posts from this blog

Ferrules and Cross Ferruling

 Ferrules are identification labels provided for every wire terminations in an instrument, equipment, or electrical/instrumentation control panels. These tube-shaped sleeves can be inserted easily on each individual wire in a multi-core cable. In earlier days fixed digits/letters are used as ferrules, but now Instrumentation engineers/technicians prints out desired ferrules by using a ferrule printing machine. Typical Ferrule The numbers/ letters on the ferrules will be given as per the approved electrical hook up or loop diagrams. This helps technicians to easily identify a particular loop/wiring from a series of terminal blocks and to troubleshoot the desired terminal connection. Separate numbers on the ferrules distinguish the positive and negative polarities of wires, thus ensure the polarity protection of the instrument. Cross Ferruling  As a wire is connected on its both ends, it is quite useful to use a cross reference method for wire identification. Unlike normal ferru...

What is a Torbar? – Averaging Pitot Tubes

 The Torbar is employed for flow measurement of liquids, gases, or steam in circular, square, or rectangular section ducts for large flow rates. The Torbar is an insertion type multi-port self-averaging primary sensor for flow measurement. Torbar TORBAR is a set of Pitot tubes mounted on a bar across the pipeline with no moving parts. An averaging Pitot tube is a technology, while TORBAR is a manufacturing brand name. There are several brands available in the market with VERABAR, ANNUBAR, etc. Averaging Pitot Tube Principle Purpose Averaging Pitot tube can be employed when the average velocity of the flow profile, rather than the velocity in a specific point in the cross-section is desired. Averaging Pitot Tubes Principle It measures the differential pressure between the static pressure tap and the tap of full pressure of a stream. Thus such magnitude of differential pressure is directly proportional to the square of the flow rate. Working The TORBAR is designed in such a way that ...

Dissolved Oxygen Analyzer Working Principle

 What is dissolved oxygen ? Dissolved oxygen refers to oxygen dissolved in water. Its concentration is expressed as the amount of oxygen per unit volume and the unit is mg/L. Biologically, oxygen is an essential element for respiration of underwater life and also acts as a chemical oxidizer. The solubility of oxygen in water is affected by water temperature, salinity, barometric pressure, etc. and decreases as water temperature rises. Measurement of dissolved oxygen by the membrane electrode method The membrane electrode method measures a diffusion current or reduction current generated by the concentration of dissolved oxygen or partial pressure of oxygen to obtain the concentration of dissolved oxygen. This method is not affected by the pH value of water being measured, oxidation and reduction substances, color, turbidity, etc. and the measurement method offers good reproducibility. When a sensor is inserted into water, an air layer forms on the membrane (Teflon membrane). The ox...