Skip to main content

Why we use Wheatstone bridge in RTD?

 RTD measures the temperature in function of variations of its resistance. In order to make them work (4 wire RTD), we need a low current that is called the excitation current.

In fact, T ∝ R  and V = IR

So T ∝ V

If I and R both are variable, measuring the temperature based on voltage V will be wrong!

So, to solve this problem we can use the Wheatstone bridge with the known resistors.

That is what has been explained in BS 1041-3: “Measurements are made by passing current through a sensing resistor and measuring the potential across it. If the current is known, the potential is a measurement of the resistance and hence the temperature. If the current is not known exactly the potential may be compared with the potential across a known resistor; this is the basis of the bridge systems.”

Different arrangements of the Wheatstone bridge allow to measure the temperature in different situations with the accuracy that we need. This is something this is known as 2, 3 and 4 wires RTD sensors.

BS 1041-3 proposes that 2-wire RTDs are restricted to a maximum of 1 Ω to 2 Ω per conductor resistance and other forms of bridge (3 and 4-wire) must be used for cable runs of 10 Ω to 15 Ω per conductor (typically 1 km). In fact, 3 or 4-wire form compensate the conductor resistance and its change by changing of temperature.

RTD Bridge Circuit

For example, figure below shows a 4-wire sensor in which red and white wires cancel out blue ones. That allows the bridge to remain balanced even with long run conductors.

Potential System
In contrast to Wheatstone bridge, BS 1041-3 article 9.3 says that if an accurately-know and constant current source is used to energize the RTD, the temperature can be measured directly by a four-terminal network.
Figure: Simplified RTD Circuit

But in order to prevent that the current passes through voltmeter the input impedance of the potential measuring device must be significantly greater than the RTD. (For example, a 0.1 % error will result from an input impedance 1 000 times the sensor resistance. BS 1041-3)

Advantages
This method of measurement has some advantages:

1. A temperature-measurement signal in the form of a voltage is available.

2. Several sensors can be connected in series with the same current source.

3. Accurate measurements of resistance can be made if the current is accurately known.

4. Measurements are independent of conductor resistance and selector switch contact resistance.


Comments

Popular posts from this blog

Ferrules and Cross Ferruling

 Ferrules are identification labels provided for every wire terminations in an instrument, equipment, or electrical/instrumentation control panels. These tube-shaped sleeves can be inserted easily on each individual wire in a multi-core cable. In earlier days fixed digits/letters are used as ferrules, but now Instrumentation engineers/technicians prints out desired ferrules by using a ferrule printing machine. Typical Ferrule The numbers/ letters on the ferrules will be given as per the approved electrical hook up or loop diagrams. This helps technicians to easily identify a particular loop/wiring from a series of terminal blocks and to troubleshoot the desired terminal connection. Separate numbers on the ferrules distinguish the positive and negative polarities of wires, thus ensure the polarity protection of the instrument. Cross Ferruling  As a wire is connected on its both ends, it is quite useful to use a cross reference method for wire identification. Unlike normal ferru...

What is a Torbar? – Averaging Pitot Tubes

 The Torbar is employed for flow measurement of liquids, gases, or steam in circular, square, or rectangular section ducts for large flow rates. The Torbar is an insertion type multi-port self-averaging primary sensor for flow measurement. Torbar TORBAR is a set of Pitot tubes mounted on a bar across the pipeline with no moving parts. An averaging Pitot tube is a technology, while TORBAR is a manufacturing brand name. There are several brands available in the market with VERABAR, ANNUBAR, etc. Averaging Pitot Tube Principle Purpose Averaging Pitot tube can be employed when the average velocity of the flow profile, rather than the velocity in a specific point in the cross-section is desired. Averaging Pitot Tubes Principle It measures the differential pressure between the static pressure tap and the tap of full pressure of a stream. Thus such magnitude of differential pressure is directly proportional to the square of the flow rate. Working The TORBAR is designed in such a way that ...

Dissolved Oxygen Analyzer Working Principle

 What is dissolved oxygen ? Dissolved oxygen refers to oxygen dissolved in water. Its concentration is expressed as the amount of oxygen per unit volume and the unit is mg/L. Biologically, oxygen is an essential element for respiration of underwater life and also acts as a chemical oxidizer. The solubility of oxygen in water is affected by water temperature, salinity, barometric pressure, etc. and decreases as water temperature rises. Measurement of dissolved oxygen by the membrane electrode method The membrane electrode method measures a diffusion current or reduction current generated by the concentration of dissolved oxygen or partial pressure of oxygen to obtain the concentration of dissolved oxygen. This method is not affected by the pH value of water being measured, oxidation and reduction substances, color, turbidity, etc. and the measurement method offers good reproducibility. When a sensor is inserted into water, an air layer forms on the membrane (Teflon membrane). The ox...